581 research outputs found

    Toric anti-self-dual 4-manifolds via complex geometry

    Full text link
    Using the twistor correspondence, this article gives a one-to-one correspondence between germs of toric anti-self-dual conformal classes and certain holomorphic data determined by the induced action on twistor space. Recovering the metric from the holomorphic data leads to the classical problem of prescribing the Cech coboundary of 0-cochains on an elliptic curve covered by two annuli. The classes admitting Kahler representatives are described; each such class contains a circle of Kahler metrics. This gives new local examples of scalar-flat Kahler surfaces and generalises work of Joyce who considered the case where the distribution orthogonal to the torus action is integrable.Comment: 25 pages, 2 figures, v2 corrected some misprints, v3 corrected more misprints, published version (minus one typo

    A lower limit on the dark particle mass from dSphs

    Full text link
    We use dwarf spheroidal galaxies as a tool to attempt to put precise lower limits on the mass of the dark matter particle, assuming it is a sterile neutrino. We begin by making cored dark halo fits to the line of sight velocity dispersions as a function of projected radius (taken from Walker et al. 2007) for six of the Milky Way's dwarf spheroidal galaxies. We test Osipkov-Merritt velocity anisotropy profiles, but find that no benefit is gained over constant velocity anisotropy. In contrast to previous attempts, we do not assume any relation between the stellar velocity dispersions and the dark matter ones, but instead we solve directly for the sterile neutrino velocity dispersion at all radii by using the equation of state for a partially degenerate neutrino gas (which ensures hydrostatic equilibrium of the sterile neutrino halo). This yields a 1:1 relation between the sterile neutrino density and velocity dispersion, and therefore gives us an accurate estimate of the Tremaine-Gunn limit at all radii. By varying the sterile neutrino particle mass, we locate the minimum mass for all six dwarf spheroidals such that the Tremaine-Gunn limit is not exceeded at any radius (in particular at the centre). We find sizeable differences between the ranges of feasible sterile neutrino particle mass for each dwarf, but interestingly there exists a small range 270-280eV which is consistent with all dSphs at the 1-σ\sigma level.Comment: 13 pages, 2 figures, 1 tabl

    Minimal cubic cones via Clifford algebras

    Full text link
    We construct two infinite families of algebraic minimal cones in RnR^{n}. The first family consists of minimal cubics given explicitly in terms of the Clifford systems. We show that the classes of congruent minimal cubics are in one to one correspondence with those of geometrically equivalent Clifford systems. As a byproduct, we prove that for any n≥4n\ge4, n≠16k+1n\ne 16k+1, there is at least one minimal cone in RnR^{n} given by an irreducible homogeneous cubic polynomial. The second family consists of minimal cones in Rm2R^{m^2}, m≥2m\ge2, defined by an irreducible homogeneous polynomial of degree mm. These examples provide particular answers to the questions on algebraic minimal cones posed by Wu-Yi Hsiang in the 1960's.Comment: Final version, corrects typos in Table

    (In)finite extent of stationary perfect fluids in Newtonian theory

    Full text link
    For stationary, barotropic fluids in Newtonian gravity we give simple criteria on the equation of state and the "law of motion" which guarantee finite or infinite extent of the fluid region (providing a priori estimates for the corresponding stationary Newton-Euler system). Under more restrictive conditions, we can also exclude the presence of "hollow" configurations. Our main result, which does not assume axial symmetry, uses the virial theorem as the key ingredient and generalises a known result in the static case. In the axially symmetric case stronger results are obtained and examples are discussed.Comment: Corrections according to the version accepted by Ann. Henri Poincar

    Do quasi-regular structures really exist in the solar photosphere? I. Observational evidence

    Full text link
    Two series of solar-granulation images -- the La Palma series of 5 June 1993 and the SOHO MDI series of 17--18 January 1997 -- are analysed both qualitatively and quantitatively. New evidence is presented for the existence of long-lived, quasi-regular structures (first reported by Getling and Brandt (2002)), which no longer appear unusual in images averaged over 1--2-h time intervals. Such structures appear as families of light and dark concentric rings or families of light and dark parallel strips (``ridges'' and ``trenches'' in the brightness distributions). In some cases, rings are combined with radial ``spokes'' and can thus form ``web'' patterns. The characteristic width of a ridge or trench is somewhat larger than the typical size of granules. Running-average movies constructed from the series of images are used to seek such structures. An algorithm is developed to obtain, for automatically selected centres, the radial distributions of the azimuthally averaged intensity, which highlight the concentric-ring patterns. We also present a time-averaged granulation image processed with a software package intended for the detection of geological structures in aerospace images. A technique of running-average-based correlations between the brightness variations at various points of the granular field is developed and indications are found for a dynamical link between the emergence and sinking of hot and cool parcels of the solar plasma. In particular, such a correlation analysis confirms our suggestion that granules -- overheated blobs -- may repeatedly emerge on the solar surface. Based on our study, the critical remarks by Rast (2002) on the original paper by Getling and Brandt (2002) can be dismissed.Comment: 21 page, 8 figures; accepted by "Solar Physics

    Entanglement without Dissipation: A Touchstone for an exact Comparison of Entanglement Measures

    Get PDF
    Entanglement, which is an essential characteristic of quantum mechanics, is the key element in potential practical quantum information and quantum communication systems. However, there are many open and fundamental questions (relating to entanglement measures, sudden death, etc.) that require a deeper understanding. Thus, we are motivated to investigate a simple but non-trivial correlated two-body continuous variable system in the absence of a heat bath, which facilitates an \underline{exact} measure of the entanglement at all times. In particular, we find that the results obtained from all well-known existing entanglement measures agree with each other but that, in practice, some are more straightforward to use than others

    Uniqueness Theorem for Generalized Maxwell Electric and Magnetic Black Holes in Higher Dimensions

    Full text link
    Based on the conformal energy theorem we prove the uniqueness theorem for static higher dimensional electrically and magnetically charged black holes being the solution of Einstein (n-2)-gauge forms equations of motion. Black hole spacetime contains an asymptotically flat spacelike hypersurface with compact interior and non-degenerate components of the event horizon.Comment: 7 pages, RevTex, to be published in Phys.Rev.D1

    Recoil correction to the ground state energy of hydrogenlike atoms

    Get PDF
    The recoil correction to the ground state energy of hydrogenlike atoms is calculated to all orders in \alpha Z in the range Z = 1-110. The nuclear size corrections to the recoil effect are partially taken into account. In the case of hydrogen, the relativistic recoil correction beyond the Salpeter contribution and the nonrelativistic nuclear size correction to the recoil effect, amounts to -7.2(2) kHz. The total recoil correction to the ground state energy in hydrogenlike uranium (^{238}U^{91+}) constitutes 0.46 eV.Comment: 16 pages, 1 figure (eps), Latex, submitted to Phys.Rev.

    Lyapunov exponents for products of complex Gaussian random matrices

    Full text link
    The exact value of the Lyapunov exponents for the random matrix product PN=ANAN−1...A1P_N = A_N A_{N-1}...A_1 with each Ai=Σ1/2GicA_i = \Sigma^{1/2} G_i^{\rm c}, where Σ\Sigma is a fixed d×dd \times d positive definite matrix and GicG_i^{\rm c} a d×dd \times d complex Gaussian matrix with entries standard complex normals, are calculated. Also obtained is an exact expression for the sum of the Lyapunov exponents in both the complex and real cases, and the Lyapunov exponents for diffusing complex matrices.Comment: 15 page
    • …
    corecore